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Entropy generation due to natural convection in isosceles triangular enclosures with inclination angles
(u) filled with a fluid-saturated porous medium has been studied numerically. The enclosure has differ-
ent inclination angles and it is non-uniformly heated from one side. The finite difference technique was
adopted to solve the governing equations of this natural convection problem. Then, entropy generation
due to heat transfer irreversibility (HTI) and fluid friction irreversibility (FFI) was calculated from its def-
inition using dependent variables of velocities and temperature fields. Calculations were performed for
different Rayleigh numbers Ra in the range of 100 6 Ra 6 1000 and inclination angle, 0� 6 u 6 180�. It
is found that both inclination angles and Rayleigh numbers make important effect on natural convection
heat transfer, fluid flow and entropy generation. The highest entropy generation due to HTI and FFI and
stream function are observed at u ¼ 90� . Multiple cells were formed at this angle. Streamlines, isotherms
and entropy contours are symmetric inside the enclosure for both u ¼ 0� and u ¼ 180�.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Porous layers have been studied extensively in last years due to
its wide applications in geothermal systems as reviewed by Cheng
[1] and Bejan [2]. Based on their paper, these kinds of applications
can be found for geothermal energy extraction, grain storage, ther-
mal insulation, etc. Wide application can be found in several books
on porous media Nield and Bejan [3], Ingham et al. [4], Ingham and
Pop [5], Vafai [6] and Vadasz [7]. Bejan and Poulikakos [8] pro-
posed the using of porous material inside the attic space to de-
crease the heat transfer.

Many researchers have studied the natural convection heat
transfer and fluid flow in triangular shaped enclosures filled with
viscous fluid due to its important applications as attics, roofs, elec-
tronic equipments or different shaped building materials. Natural
convection analysis in such geometries has been performed by
Akinsete and Coleman [9], Asan and Namli [10,11], Ridouane
et al. [12], Holtzman et al. [13], for isothermal and Basak et al.
[14,15] for non-isothermal boundary conditions. All of these stud-
ies indicate that both aspect ratio of triangular enclosure and Ray-
leigh number affects the heat transfer and flow fields.

The number of studies on natural convection in triangular
enclosures filled with fluid-saturated porous media is very limited.
ll rights reserved.

19; fax: +90 424 236 7064.
Basak et al. [14] made recently a numerical study solving the
Navier–Stokes and energy balance equations for a triangular enclo-
sure filled with a porous medium using a penalty finite element
analysis with bi-quadratic elements. They analyzed two cases
based on temperature boundary conditions as case I: two inclined
walls are uniformly heated while the bottom wall is isothermally
cooled and case II: two inclined walls are non-uniformly heated
while the bottom wall is isothermally cooled. They found that
the local Nusselt numbers for the bottom wall are maximum at
the bottom corner points for uniform heating. On the other hand
the local Nusselt number shows little variations due to non-uni-
form heating especially for the Darcy number Da in the limit
Da 6 10�4. Varol et al. [16–18] have performed studies on natural
convection in porous right-angle triangular enclosures by adding
some solid objects to control heat transfer. Further, Basak et al.
[19,20] investigated the natural convection in triangular enclo-
sures filled with porous media.

The wide theory on entropy generation is given by Bejan
[21,22]. Entropy generation in systems in which natural convec-
tion occurs is an important issue in engineering applications be-
cause it gives information about local and global losses of
energy due to heat transfer and fluid friction irreversibility. Thus,
the energy saving can be obtained by reducing these losses. The
subject is mostly analyzed for rectangular, square or circle shaped
porous enclosures in the literature. Baytas [23] and Zahmatkesh
[24] investigated the entropy generation for inclined square and
horizontal square enclosures, respectively. They observed that en-

mailto:ysnvarol@gmail.com
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Nomenclature

Be Bejan number
g gravitational acceleration, ms�2

k thermal conductivity of the fluid, Wm�1 K�1

K permeability of the porous medium, m2

L length of the triangle, m
n normal direction on a plane, m
N dimensionless entropy generation number
Nu local Nusselt number, Nu ¼ ð�oh=onÞhot wall
Ra Darcy-modified Rayleigh number, Ra ¼ ðgbKðTH � TCÞLÞ

=taa

S000gen entropy generation rate per unit volume, Wm�3 K�1

T fluid temperature, K
T0 ðTH þ TCÞ=2; K
u, v velocity components along x- and y-axes, respectively,

ms�1

U,V non-dimensional velocity components along x- and
y-axes, respectively, (uL=aa; vL=aa)

x,y dimensional Cartesian coordinates, m

X, Y non-dimensional coordinates, (X ¼ x=L; Y ¼ y=LÞ
DT temperature difference (TH � TC), K
Greek letters
aa thermal diffusivity of porous media, m2.s�1

b thermal expansion coefficient, K�1

k amplitude of the sinusoidal function
u inclination angle, deg
h non-dimensional temperature, h ¼ ðT � TCÞ=ðTH � TCÞ
l dynamic viscosity (kgm�1 s�1)
/ irreversibility distribution ratio
t kinematic viscosity, m2.s�1

w dimensional stream function, m2.s�1

W non-dimensional stream function, W ¼ w=aa

Subscript
C cold
H hot
max maximum
min minimum

y 

a
x 

hot wall 
0=Ψ , 

sinusoidal temperature distribution, 
( )( )sCos πλθ 21−=

λ
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ergy losses can be reduced with increasing Rayleigh number and
inclination angle. It should be mentioned to this end that the only
study on entropy generation in a partially heated isosceles trian-
gular enclosure filled with a clear-fluid (Newtonain fluid) was
performed by Varol et al. [25].

Non-isothermal thermal boundary conditions for studies of nat-
ural convection in enclosures filled with clear and porous fluids
were used by several authors. Sarris et al. [26], Bilgen and Ben-Yed-
der [27] applied the non-isothermal boundary condition for a
square enclosure filled with a clear-fluid, while Saeid [28] and
Varol et al. [29] applied these thermal conditions for porous square
enclosure.

The main originality of the present work is the application of
non-isothermal boundary condition onto a boundary of inclined
isosceles triangular enclosures filled with porous media and its
second law analysis due to natural convection. The above literature
survey clearly shows that there is no study in the literature on en-
tropy generation analysis in non-isothermally heated and inclined
isosceles enclosures.
b
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Fig. 1. Physical model: (a) schematical configuration with boundary conditions and
coordinates; (b) grid distribution.
2. Problem formulation

The general schematic configuration is a two-dimensional in-
clined isosceles triangular enclosure filled with a porous medium
as shown in Fig. 1(a) along with the coordinates and boundary con-
ditions. Non-isothermal boundary conditions were applied to the
long side of the isosceles triangular enclosure and other two
boundaries are adiabatic. The governing equations for the steady-
state, two-dimensional, incompressible flow with the Darcy–Bous-
sinesq approximation and constant fluid properties can be written
in dimensionless form as follows:

o2W

oX2 þ
o2W

oY2 ¼ Ra cos u
oh
oX
� sin u

oh
oY

� �
ð1Þ

oW
oY

oh
oX
� oW

oX
oh
oY
¼ o2h

oX2 þ
o2h

oY2 ð2Þ

where the dimensionless variables are defined as

X ¼ x
L
; Y ¼ y

L
; W ¼ w

aa
; U;V ¼ ðu; vÞL

aa
; h ¼ T � TC

TH � TC
ð3Þ

where W is the stream function which is defined in the usual way as
u ¼ ow
oy
; v ¼ � ow

ox
ð4Þ

and Ra is the Rayleigh number for a porous medium defined as

Ra ¼ ðgbKðTH � TCÞLÞ
taa

: ð5Þ

The physical meaning of the other variables is given
in the Nomenclature. The boundary conditions of Eqs. (1) and (2)
as shown in Fig. 1(a) are W ¼ 0 for all solid boundaries,



Table 2
Comparison of the mean Nusselt number, Num for a square porous cavity with results
from the literature at Ra = 1000

References Mean Nusselt number (Num) Deviation%

Gross et al. [31] 13.448 0.862
Goyeau et al. [32] 13.470 0.697
Manole and Lage [33] 13.637 0.535
Saeid and Pop [34] 13.726 1.180
Baytas and Pop [35] 14.060 3.527
Present result 13.564 –

N

24.35

H
T

I

a

N

b
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h ¼ kð1� Cosð2psÞÞ on the top wall and oh
on ¼ 0 on the adiabatic

walls, where s is the differential distance on the top wall and n de-
notes the direction normal to the walls of the cavity. In above
boundary condition, the total heat flux qw is assumed to have the
same representation as the case of local thermal equilibrium. In
other words, it is assumed that both phases have the same temper-
ature and temperature gradient at the wall as indicated by Alazmi
and Vafai [30].

3. Numerical technique

Central difference method was applied for discretization of the
governing Eqs. (1) and (2). The solution of linear algebraic equa-
tions was performed using Successive Under Relaxation (SUR)
method. The iteration procedure terminated under the following
condition:

X
i;j

jUm
i;j �Um�1

i;j j
,X

i;j

jUm
i;jj 6 10�5 ð6Þ

where U stands for either h or W, and m denotes the iteration step. The
value of 0.1 was used for under-relaxation parameter. The solution
domain, therefore, consists of grid points at which equations are ap-
plied. Table 1 shows the grid-independency test with iteration num-
ber. The execution time for a typical caseu ¼ 0�, the grid size 61 � 61,
Ra = 1000 for 4173 iterations was around 1 min for a dual core com-
puter. The tests were performed for grids of size from 31 � 31 to
101 � 101. Based on obtained results from different grid dimension
the 61 � 61 uniform grid spacing has been used for the present trian-
gular cavity. Grid distribution is also shown in Fig. 1(b). Regular grid
distribution is used in this study. The inclined wall was approximated
with staircase-like zigzag lines. In other words, rectangular finite dif-
ference grid is placed over the triangular enclosure so that the diago-
nal elements coincide with points on the inclined surface. This is also
shown in Fig. 1(b) in detail. Based on the detailed views of boundary
grids in Fig. 1, the nodes coincide with boundary of the enclosure.

3.1. Evaluation of heat transfer

Physical quantities of interest in this problem are defined sim-
ilar to that of Sarris’ et al. study [26]. Thus, the local Nusselt num-
ber, Nu and the average Nusselt number, Num, which are given by

Nu ¼ � oh
on

� �
hotwall

; Num ¼
1
s

Z s¼
ffiffi
2
p

s¼0
Nuds ð7a;bÞ

However, in the present study, the net heat input from the non-
isothermal wall into the enclosure is zero, and as a consequence
the average Nusselt number is also zero.

4. Entropy generation

The non-equilibrium conditions due to the exchange of en-
ergy and momentum, within the fluid-saturated porous medium
and at the solid boundaries, cause a continuous entropy gener-
ation in the flow field of the porous cavity. This entropy gener-
Table 1
Grid independency test at u ¼ 0� and Ra ¼ 1000

Grid dimension
(X by Y)

Minimum Nusselt
number (Numin)

Maximum Nusselt
number (Numax)

Number of
iteration

31 � 31 �2.61 6.85 2311
41 � 41 �3.25 7.26 3120
61 � 61 �4.12 7.65 4173
81 � 81 �4.42 7.83 6720
101 � 101 �4.27 7.74 9686
ation is due to the irreversible nature of heat transfer and
viscosity effects, within the fluid and at the solid boundaries.
From the known temperature and velocity fields, volumetric en-
tropy generation can be calculated by the equation (Baytas
[23]),
H
T

I

Fig. 2. Comparison of the total entropy generation number (N) and entropy
generation u due to HTI contours obtained with those of Baytas [23] (on the left)
and present code (on the right): (a) Ra ¼ 100; (b) Ra ¼ 1000.
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S000gen ¼
k

T2
0

ðrTÞ2 þ l
KT0
ðu2 þ v2Þ ð8Þ

By using the same dimensionless parameters given in Eq. (3),
the dimensionless entropy generation number N is given as

N ¼ oh
oX

� �2

þ oh
oY

� �2
" #

þ /
oW
oY

� �2

þ oW
oX

� �2
" #

ð9Þ

In this equation, u is defined as the irreversibility distribution
ratio

/ ¼ lT0

k
a2

a

KðDTÞ2

 !
ð10Þ

and its value is taken equal to 10�2 in all calculations. We notice
that Eq. (9) consists of two parts. The first part (first square brack-
eted term at the right-hand side of Eq. (9) is the irreversibility due
to finite temperature gradient and generally termed as the heat
transfer irreversibility (HTI). The second part (second square brack-
a

b

Fig. 3. Comparison of streamlines and isotherms with literature at Ra ¼ 56: (a) isother
present (on the left) and Basak et al. [19] (on the right).
eted term) is the contribution of fluid friction irreversibility (FFI) to
entropy generation. The overall entropy generation, for a particular
problem, is an internal competition between HTI and FFI. Usually,
free convection problems, at low and moderate Rayleigh numbers,
are dominated by the heat transfer irreversibility. Entropy genera-
tion number (N) is important for generating entropy generation
profiles or maps but fails to give any idea whether fluid friction or
heat transfer dominates. The two parameters, namely, the irrevers-
ibility distribution ratio (/) and Bejan number (Be)) are achieving an
increasing popularity among the researchers of the Second-Law of
Thermodynamics. Finally, it is noticed that Bejan number (Be),
which is the ratio of heat transfer irreversibility to the entropy pro-
duction number (N), can be mathematically expressed as

Be ¼
oh
oX

� �2 þ oh
oY

� �2
h i

N
¼ HTI

HTI þ FFI
ð11Þ

Integration of Eq. (9) over the whole domain to obtain entropy
generation number as
ms for present (on the left) and Basak et al. [19] (on the right); (b) streamlines for
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Ns ¼
Z 1

0

Z 1

0
NdXdY ð12Þ
4.1. Verification of the code runs

Computations were first performed for a widely used benchmark
problem of natural convection heat transfer in a differentially heated
square porous enclosure for the benchmarking purpose. The ob-
tained numerical results for the mean Nusselt number Num are com-
pared in Table 2 for Ra = 1000 with those given by different authors
[31–35]. As it can be seen the obtained result shows good agreement
with the results reported by other authors. A maximum difference of
3.527% has been found for Num at Ra = 1000. A second comparison
has been also made using the entropy generation results reported
by Baytas [23]. Comparison was performed with entropy generation
due to heat transfer irreversibility and total entropy generation as
shown in Fig. 2(a) (Ra = 100) and Fig. 2(b) (Ra = 1000). As can be seen
a

b

c

d

Fig. 4. Streamlines (on the left) and isotherms (on the right) for u
from this comparison the obtained results show extremely good
agreement with those from the open literature. In the third valida-
tion test, an acceptable agreement was attained when the contour
maps of the isotherms and streamlines of right-angle triangular
enclosure, were regenerated for some cases reported by Basak
et al. [19], as it is shown in Fig. 3 for Ra = 56.
5. Results and discussion

Second law analysis due to natural convection heat transfer and
fluid flow in inclined isosceles triangular enclosures filled with a
porous medium has been performed under non-isothermal bound-
ary conditions using a numerical technique for different Rayleigh
numbers and inclination angles.

Fig. 4 shows the streamlines (on the left) and isotherms (on the
right) for u ¼ 0� at different Rayleigh numbers. The figure shows
that flow field is completely symmetric based on the vertical axis
¼ 0�: (a) Ra ¼ 100; (b) Ra ¼ 250; (c) Ra ¼ 500; (d) Ra ¼ 1000.
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and two circulation cells were formed at different rotating direc-
tion. Absolute values of stream function are equal to jWj ¼ 1:12
for Ra = 100. One can guess the direction of rotating flow using
the definition of stream function as the streamlines with +W corre-
spond to anticlockwise circulation, and those with �W correspond
to clockwise circulation, respectively. Temperature distribution is
also symmetric due to domination of conduction mode of heat
transfer. The obtained results are supported by those reported by
Sarris et al. [26] but they investigated the case of a square cavity
filled with a viscous fluid. Increasing of absolute values of stream
function indicates that the flow strength increases with increasing
of Rayleigh number and streamlines are more clustered near the
top corners. It results in from the increasing of velocity of the fluid
flow. As also it is clearly seen from the distribution of the iso-
therms, these are cumulated around the middle section of the iso-
thermal heater. This result can also be found in Kublbeck et al. [36].
Fig. 5 shows the entropy generation due to fluid flow irreversibility
(FFI) (on the left) and heat transfer irreversibility (HTI) (on the
a

b

c

d

Fig. 5. Entropy generation due to FFI (on the left) and HTI (on the right)
right) using the same parameter as in Fig. 4. As it resulted from
streamlines and isotherms distributions, the distribution of entro-
py generation is also symmetric for both FFI and HTI. The entropy
generation is concentrated along the heated and cooled part of
non-isothermal wall where the temperature gradient has a maxi-
mum value. In other words, the actives parts are cumulated on
the non-isothermal wall. The reason of this cumulation is that
the temperature gradient concentrates along the horizontal wall.
The contours of the entropy generation due to HTI moves to the
isothermal wall and values of entropy generation due to FFI in-
creases with increasing of Rayleigh number. As Rayleigh number
increases, there is a change from conduction dominant region to
convection dominant region, respectively.

Fig. 6 displays the streamlines (on the left) and isotherms (on
the right) for different inclination angles which changes from
u ¼ 45� to u ¼ 180� at Ra = 500. The value of u ¼ 45� corresponds
to a right-angle triangular enclosure with non-isothermally heated
from inclined wall. In this case, two cells were formed in different
for u ¼ 0�: (a) Ra ¼ 100; (b) Ra ¼ 250; (c) Ra ¼ 500; (d) Ra ¼ 1000.
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d

Fig. 6. Streamlines (on the left) and isotherms (on the right) for Ra ¼ 500: (a) u ¼ 45�; (b) u ¼ 90�; (c) u ¼ 135�; (d) u ¼ 180� .
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Fig. 7. Entropy generation due to FFI (on the left) and HTI (on the right) for Ra ¼ 500: (a) u ¼ 45�; (b) u ¼ 90�; (c) u ¼ 135�); u ¼ 180� .
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rotating direction as the bottom one clockwise and the top one
counter clockwise direction. The fluid, which is near to the hot re-
gion of non-isothermal wall, moves upward while the relatively
heavy fluid, which is near to cold wall moves downward, and the
heated fluid is moving up. Thus, the top cell is dominant at the bot-
tom wall due to moving of hot fluid to the upper top corner. This is
also clearly seen from the distribution of the isotherms shown in
Fig. 6(a) (on the right). For u ¼ 90�, three cells were formed. The
bottom and the top ones rotate in clockwise rotating direction
and the middle one in counterclockwise. In this position, the
heated wall is effective and the main cells are dominant at the bot-
tom and at the top, respectively. There is observed a hill-like tem-
perature distribution or a rain drop-like temperature distribution
over the heated region of the cavity and heated fluid moves to
the top corner. Isotherms are almost parallel to each other at the
bottom corner due to domination of conduction mode of heat
transfer (Fig. 6(b)). Looking at the position of u ¼ 135�, again
two cells were formed and the top one is dominant to the bottom
due to increasing of heated part of the fluid. The strength of flow is
found to be very weak at the bottom part of the enclosure
(Fig. 6(c)). It is interesting to note that, the greater circulation
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Fig. 8. Iso-Bejan lines at u ¼ 0� (on the left) and u ¼ 180� (on the
due to position, leads to movement of the elliptical stream function
from top right corner to middle of the cavity. Another interesting
observation is that the temperature contours are not widely dis-
persed at the inclined wall. Again, there is a completely symmetric
flow and temperature field for the values of inclination angle
u ¼ 180� as shown in Fig. 6(d).

Fig. 7(a–d) shows the entropy generation contours (irrevers-
ibility maps) due to FFI (on the left) and HTI (on the right) for
the same cases with Fig. 6 to see the effects of inclination angle
on entropy generation. It can be seen that for u ¼ 45�, the entro-
py generation due to FFI cover whole domain except the left bot-
tom corner of the cavity. The covered domain is affected by
changing the inclination angle u. They are cumulated on three
different locations at inclined wall. Active sides are the middle
region of the non-isothermal wall for u ¼ 90� and this side
changes to right top corner with changing of position from
u ¼ 90� to u ¼ 135�. This is due to heat transfer irreversibility,
since large heat transfer is confined to these locations. Fig. 7(d)
shows the symmetric distribution of entropy generation due to
symmetric behavior of flow and thermal field as given in
Fig. 6(d). As seen from Fig. 7(d) the entropy generation is mostly
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localized along the non-isothermal walls. This is due to the
boundary layer regime at higher Rayleigh number. This fact is
also valid for a rectangular cavity filled with a viscous fluid as
studied by Magherbi et al. [37].

The iso-Bejan lines are presented in Fig. 8 for u ¼ 0� (on the left)
and u ¼ 180� (on the right), which are opposite cases, at different
Rayleigh numbers to see the effects of inclination angle on the ratio
between the heat transfer irreversibility and overall entropy gener-
ation, which is defined as Bejan numbers. It can be seen that the
distribution of iso-Bejan lines are symmetric relative to the bottom
corner. Effects of entropy generation due to FFI are higher near the
non-isothermal wall but it becomes smaller around the origin. As
seen from the streamlines distribution in Fig. 4 (on the left), there
is a strong flow friction over the heated region. In this region entro-
py is generated mostly due to FFI. With the increase of the Rayleigh
number, the middle part of the non-isothermal wall becomes effec-
tive on entropy generation due to HTI. It is also effective almost on
half of the enclosure as given in Fig. 8(b–d). For further values of
Rayleigh number, values of iso-Bejan are almost zero. In this case,
the entropy generation due to HTI and FFI decreases. It means that
there are no irreversibilities at that region and there is no energy
loses. For the position of u ¼ 180�, a convex shaped distribution
is observed for all values of the Rayleigh number. Entropy genera-
tion spreads all over the enclosure for low Rayleigh numbers. FFI
irreversibility increases with increasing of Rayleigh number and
iso-Bejan lines are clustered near the non-isothermal wall of the
cavity. At the highest Rayleigh number (Fig. 8(d)), they are cumu-
lated at the corners. Comparison of two position of the enclosure
indicates that entropy generation becomes stronger due to FFI in
the position of u ¼ 0�.
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Fig. 9. Variation of the maximum absolute stream function jWjmax: (a) with the
inclination angle u for different Rayleigh numbers; (b) with the Rayleigh number
for different inclination angles.
Fig. 9(a) illustrates the variation of absolute maximum stream
function with inclination angle for different Rayleigh numbers.
The figure represents a combined measure of intensity and extent
of the recirculation region. Values of / are increased up to / = 75o

for Ra ¼ 1000 and Ra ¼ 750, and are also increased up to u ¼ 45�

for other values of the Rayleigh number. Then, there is a minimum
value between u ¼ 90� for Ra ¼ 100, 250 and 500 and u ¼ 105� for
Ra ¼ 750 and 1000. In the same manner, Fig. 9(b) shows the vari-
ation of the absolute maximum stream function with Rayleigh
numbers. It is an interesting result that values of stream function
increase rapidly for u ¼ 90� due to forming of multiple cells as
seen from Fig. 6(b). At this position of the enclosure, a Bénard type
cell was formed. Thus, Ra ¼ 500 is a critical value for transition of
steady-state flow to an unsteady regime for a triangular enclosure
at the inclination u ¼ 90�. It is noticed that the highest value of the
absolute maximum stream function is obtained for u ¼ 45�. An-
other result can be seen from the figure, namely that the stream
functions are increased with increasing of Rayleigh numbers. The
values are almost equal to each other for u ¼ 0� and u ¼ 180�.

Fig. 10(a–e) shows the variation of the local Nusselt number
along the heated wall for different Rayleigh numbers and different
inclination angles. As it is well-known, higher Rayleigh number
means larger heat addition to the system. Namely, intensification
of fluid convection increases with increasing of Rayleigh number.
Further, Fig. 10 clearly shows that there are positive and negative
values of the local Nusselt number. Negative sign means losing
heat of the fluid. In the case of u ¼ 0�, a symmetric distribution
is observed and maximum and minimum values are formed above
the center of heated and cooled region at the highest value of Ray-
leigh number. The similar distribution of local Nusselt number is
supported by Sarris et al. [26]. This stems from the symmetric flow
pattern as indicated in the above figures. The symmetric distribu-
tion becomes distorted for u ¼ 45�. Values are almost equal to
each other for X P 1:1 on the heated wall. And there is a huge in-
crease of the value of local Nusselt number around X ¼ 0:22 due to
high circulation intensity. For u ¼ 90�, a wavy variation is ob-
served for the local Nusselt number. This is due to presence of
the multiple circulation cells as given in Fig. 6(b). Variation of
the local Nusselt number along the heated horizontal wall of the
cavity is presented in Fig. 10(d) for u ¼ 135�. As illustrated in the
figure, lower values are formed and these values depend on the po-
sition of the enclosure. Again, a symmetric distribution is formed at
u ¼ 180�. In this case, the flow field also symmetric as given in
streamline (on the left) from Fig. 6(d).

Variation of minimum and maximum values of local Nusselt
numbers with Rayleigh number is shown in Fig. 11 at different
inclination angles. The values are obtained from negative and posi-
tive parts of the Nusselt number as illustrated in the small figure at
the left side of Fig. 11. These two Nusselt numbers stem from
heated and cooled parts of the non-isothermal boundary of the
enclosure. Thus, we chose the peak values of both Nusselt numbers
for main figure. As given in the figure, the maximum value of the
Nusselt number increases monotonically with increasing of Ray-
leigh number for all values of the inclination angle. The reason of
different behavior of Nusselt numbers at u ¼ 90� comes from Ray-
leigh Bénard like convection as given in Fig. 6(b). As indicated ear-
lier that multiple cells were formed at this value of inclination
angle, u ¼ 90�. The highest maximum and minimum values are
formed for u ¼ 0� and heat transfer decreases for u ¼ 135� and
u ¼ 180�.

Variation of the Bejan number Be, which is calculated using Eq.
(9), with the Rayleigh number is given in Fig. 12 for different incli-
nation angles u. As given in the figure, Bejan number decreases
with increasing of Rayleigh number for all values of inclination an-
gle. This is also observed from the work of Magherbi et al. [37]. As
it is shown in the literature (Bejan [21], Baytas [23]), Be ¼ 1:0 is the
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Fig. 10. Variation of local Nusselt number on the heated wall for different Rayleigh numbers: (a) u ¼ 0�; (b) u ¼ 45�; (c) u ¼ 90�; (d) u ¼ 135�; (e) u ¼ 180� .
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limit at which the irreversibility is due to heat transfer and Be ¼ 0
is the irreversibility due to FFI. However, for the case of Be ¼ 0:5
entropy generation due to HTI and FFI are equal. For u ¼ 90�, HTI
irreversibility is dominant for lower Rayleigh number but FFI be-
comes dominant at Ra ¼ 1000. The highest values of Bejan num-
bers are obtained at the highest Rayleigh number at u ¼ 0�. The
values are almost equal for u ¼ 0� and u ¼ 180� due to symmetric
flow field as indicated in above discussions. Thus, the Bejan num-
ber is clearly a measure of the relative magnitude of the entropy
generation due to HTI and FFI. As a result, the observations indicate
us that the inclination angle u is a control parameter for entropy
generation and saving of energy.
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Fig. 13. Variation of entropy generation with Rayleigh number for different
inclination angles: (a) FFI; (b) HTI.
Finally, we have presented the variation of entropy generation
due to FFI and HTI with Rayleigh number for different inclination
angles in Fig. 13(a) and (b). It is seen that the entropy generation
increases with increasing of inlet energy to the system, namely
increasing of Rayleigh number, which is an expected result, for
all inclination angles. This is valid for entropy generation due to
both HTI and FFI. At the inclination angle of u ¼ 180�, lower values
are formed for both HTI and FFI. Entropy generation due to HTI is
equal to each other for u ¼ 45� and u ¼ 180�. It is an interesting
result, that the highest value of entropy generation due to FFI is
formed for u ¼ 90�. It can be seen from both Figs. 12 and 13 that
Rayleigh Bénard convection, which occurs at u = 90�, affects the
entropy generation for both HTI and FFI.

6. Conclusion

Laminar natural convection and entropy generation in an in-
clined isosceles triangular enclosure filled with a porous medium
has been numerically studied for the case of non-isothermally
heated long wall and adiabatic at the equally length walls. Equa-
tions of mass, momentum and energy have been written using
Darcy law along with the Boussinesq approximation. Isotherms,
streamlines, entropy generation due to FFI and HTI, iso-Bejan
lines, Nusselt numbers and Bejan numbers have been produced.
The influence of inclination angle on the flow patterns and heat
transfer characteristics in the enclosure is examined in detail
for large range values of the Rayleigh number. It is found that
the inclination angle affects the number of cells, circulation inten-
sity and temperature distribution. Thus, heat transfer and circula-
tion intensity decrease when non-isothermal wall locates at the
top. A symmetric flow and temperature distribution is observed
for u ¼ 180� and u ¼ 0�, and the Bejan numbers are equal for
these inclination angles. The highest entropy generation due to
HTI and FFI and stream function are observed at u ¼ 90� and
multiple cells were formed at this angle. Both entropy generation
and heat transfer increase with increasing of Rayleigh number.
Flow strength also increases and isotherms are clustered near
non-isothermal wall with Rayleigh number. Bejan number is de-
creased with entropy generation and FFI becomes dominant near
the non-isothermal wall especially at high Rayleigh numbers.
Heat losses are increased with increasing of inclination angle
and local Nusselt numbers are symmetric for u ¼ 180� and
u ¼ 0�.
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